LeetCode day22
Diffculty: Medium
134. Gas Station
Topic: Greedy
There are N gas stations along a circular route, where the amount of gas at station i is gas[i].
You have a car with an unlimited gas tank and it costs cost[i] of gas to travel from station i to its next station (i+1). You begin the journey with an empty tank at one of the gas stations.
Return the starting gas station’s index if you can travel around the circuit once in the clockwise direction, otherwise return -1.
Note:
- If there exists a solution, it is guaranteed to be unique.
- Both input arrays are non-empty and have the same length.
- Each element in the input arrays is a non-negative integer.
Example 1:
Input:
gas = [1,2,3,4,5]
cost = [3,4,5,1,2]
Output: 3
Explanation:
Start at station 3 (index 3) and fill up with 4 unit of gas. Your tank = 0 + 4 = 4
Travel to station 4. Your tank = 4 - 1 + 5 = 8
Travel to station 0. Your tank = 8 - 2 + 1 = 7
Travel to station 1. Your tank = 7 - 3 + 2 = 6
Travel to station 2. Your tank = 6 - 4 + 3 = 5
Travel to station 3. The cost is 5. Your gas is just enough to travel back to station 3.
Therefore, return 3 as the starting index.
Example 2:
Input:
gas = [2,3,4]
cost = [3,4,3]
Output: -1
Explanation:
You can't start at station 0 or 1, as there is not enough gas to travel to the next station.
Let's start at station 2 and fill up with 4 unit of gas. Your tank = 0 + 4 = 4
Travel to station 0. Your tank = 4 - 3 + 2 = 3
Travel to station 1. Your tank = 3 - 3 + 3 = 3
You cannot travel back to station 2, as it requires 4 unit of gas but you only have 3.
Therefore, you can't travel around the circuit once no matter where you start.
Approach1
设置两个指针,一个指向起始节点,一个当前节点。然后按下面规则运算:
- 初始化起始节点 start 和当前节点 cur 都为 i (可任意设,如 0)。
- 这个时候拥有的油量为 oil = gas[i],驶向下一节点所需要的油量为 cost[i]。
- 则如果 oil >= cost[i],那么我们就驶向下一节点,cur += 1,同时加满这个加油站的油 oil += gas[cur]。
- 如果 oil < cost[i],说明从当前这个 start 节点出发是不可能到达 cur 的下一节点的。那么,我们就将 start 节点向前移一位:start -= 1,即假设是从前一节点出发的。这时要记得加上从新的start所加的油和出发到下一节点损耗的油。 oil += gas[start] - cost[start]。
- 当两节点相邻时结束: cur + 1 == start。
- 返回时要注意当前剩的油能否从最后的节点行驶到起始点。
具体实现时要对于 cur 和 start 每次变化时,要加上一个对环的长度的取余
# print(2 % 5) # 2
# print(-2 % 5) # 3
# print(1%5) # 1
# print(-1%5) # 4
# s = 5
# s += 5-2
# print(s) # 8
def canCompleteCircuit(gas: List[int], cost: List[int]) -> int:
# 环的长度
mod = len(gas)
# 起始点假设为 0,当前在 0 节点。
start, cur = 0, 0
# 把 0 节点的油都灌进去。
oil = gas[0]
# 当 cur + 1 == start 时说明到了终点,所以没有考虑终点到起点(两者相邻)所用的油。
while (cur + 1) % mod != start:
# 如果油不够开往下一节点。
if oil < cost[cur]:
# 说明以 start 为起始节点不行,将 start 前一位假设为起始节点。
start = (start - 1) % mod
# 新的起始点里面的油全都抱走,同时要计算从新的起始点
# 到旧的的起始点(它的下一节点)所消耗的油。
oil += gas[start] - cost[start]
# 如果够。
else:
# 把消耗的油减掉。
oil -= cost[cur]
# 去下一个节点。
cur = (cur + 1) % mod
# 把新节点的油抱走。
oil += gas[cur]
# 返回时记得判断一下在终点时的油能否开到起点。
return start if oil - cost[cur] >= 0 else -1
Approach2
def canCompleteCircuit(gas: List[int], cost: List[int]) -> int:
if sum(gas) < sum(cost):
return -1
n = len(gas)
if n==1:
return 0
starts = [i for i in range(n) if gas[i] > cost[i]] # 所有可以出发的点
start_idx = 0
starts_len = len(starts)
while True:
start = starts[start_idx]
gas_cur = gas[start]
cost_cur = cost[start]
tmp = (start+1) % n
while tmp != start:
if start_idx < starts_len and starts[start_idx] < tmp:
start_idx += 1 # # 更新下一个出发点
gas_cur += gas[tmp]
cost_cur += cost[tmp]
if gas_cur < cost_cur: # # 当前出发点失败,break, 重新出发(从更新过的i出发
break
tmp = (tmp +1) % n
else:
return start # 当前出发点成功
if start == starts[-1] and start_idx == n: # 失败
return -1
138. Copy List with Random Pointer
Topic: Hash Table, Linked list
A linked list is given such that each node contains an additional random pointer which could point to any node in the list or null.
Return a deep copy of the list.
The Linked List is represented in the input/output as a list of n nodes. Each node is represented as a pair of [val, random_index] where:
val: an integer representing Node.val random_index: the index of the node (range from 0 to n-1) where random pointer points to, or null if it does not point to any node.
Example 1:
Input: head = [[7,null],[13,0],[11,4],[10,2],[1,0]]
Output: [[7,null],[13,0],[11,4],[10,2],[1,0]]
Example 2:
Input: head = [[1,1],[2,1]]
Output: [[1,1],[2,1]]
Example 3:
Input: head = [[3,null],[3,0],[3,null]]
Output: [[3,null],[3,0],[3,null]]
Example 4:
Input: head = []
Output: []
Explanation: Given linked list is empty (null pointer), so return null.
Constraints:
- -10000 <= Node.val <= 10000
- Node.random is null or pointing to a node in the linked list.
- Number of Nodes will not exceed 1000.
Approach1
遍历链表两次:
第一遍:把每个新生成的结点放在对应的旧结点后面, 形如: 1->1’->2->2’->3->3’->4->4’->null
第二遍:修改每个新结点的 next 指针和 random 指针
"""
# Definition for a Node.
class Node:
def __init__(self, x: int, next: 'Node' = None, random: 'Node' = None):
self.val = int(x)
self.next = next
self.random = random
"""
def copyRandomList(head: 'Node') -> 'Node':
if not head:
return None
# 第一遍遍历,把每个新生成的结点放在对应的旧结点后面
p = head
while p:
new_node = Node(p.val)
new_node.next = p.next
p.next = new_node
p = new_node.next # 下一个旧结点
# 第二遍修改每个新结点的 next 和 random
p = head
while p:
next_origin = p.next.next # 下一个旧结点备份一下
p.next.next = next_origin.next if next_origin else None # 修改新结点的 next
p.next.random = p.random.next if p.random else None # 修改新结点的 random
p = next_origin # 下一个旧结点
return head.next
Approach2
139. Word Break
Topic: DP
Given a non-empty string s and a dictionary wordDict containing a list of non-empty words, determine if s can be segmented into a space-separated sequence of one or more dictionary words.
Note:
- The same word in the dictionary may be reused multiple times in the segmentation.
- You may assume the dictionary does not contain duplicate words.
Example 1:
Input: s = "leetcode", wordDict = ["leet", "code"]
Output: true
Explanation: Return true because "leetcode" can be segmented as "leet code".
Example 2:
Input: s = "applepenapple", wordDict = ["apple", "pen"]
Output: true
Explanation: Return true because "applepenapple" can be segmented as "apple pen apple".
Note that you are allowed to reuse a dictionary word.
Example 3:
Input: s = "catsandog", wordDict = ["cats", "dog", "sand", "and", "cat"]
Output: false
Approach1
DP 1. 初始化dp=[False,⋯,False],长度为n+1n+1。nn为字符串长度。dp[i]表示s的前i位是否可以用wordDict中的单词表示。 2. 初始化dp[0]=True,空字符可以被表示。 3. 遍历字符串的所有子串,遍历开始索引ii,遍历区间[0,n): - 遍历结束索引j,遍历区间[i+1,n+1): - 若dp[i]=True且s[i,⋯,j)在wordlist中:dp[j]=True。解释:dp[i]=True说明s的前i位可以用wordDictwordDict表示,则s[i,⋯,j)出现在wordDict中,说明s的前j位可以表示。 4. 返回dp[n]
code:
def wordBreak(s: str, wordDict: List[str]) -> bool:
n=len(s)
dp=[False]*(n+1)
dp[0]=True
for i in range(n):
for j in range(i+1,n+1):
if(dp[i] and (s[i:j] in wordDict)):
dp[j]=True
return dp[-1]
Approach2
回溯法
- 使用记忆化函数,保存出现过的backtrack(s),避免重复计算。
- 定义回溯函数backtrack(s)
- 若s长度为0,则返回True,表示已经使用wordDict中的单词分割完。
- 初试化当前字符串是否可以被分割res=False
- 遍历结束索引i,遍历区间[1,n+1):
- 若s[0,⋯,i−1]在wordDict中:res=backtrack(s[i,⋯,n−1]) or res。
- 解释:保存遍历结束索引中,可以使字符串切割完成的情况。
- 返回res
- 返回backtrack(s)
code:
def wordBreak(s: str, wordDict: List[str]) -> bool:
import functools
@functools.lru_cache(None)
def back_track(s):
if(not s):
return True
res=False
for i in range(1,len(s)+1):
if(s[:i] in wordDict):
res=back_track(s[i:]) or res
return res
return back_track(s)
146. LRU Cache
Topic: Design
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
The cache is initialized with a positive capacity.
Follow up: Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
Approach1
使用python里的有序字典OrderedDict
- popitem(last=True)
- The popitem() method for ordered dictionaries returns and removes a (key, value) pair. The pairs are returned in LIFO order if last is true or FIFO order if false.
- move_to_end(key, last=True)
- Move an existing key to either end of an ordered dictionary. The item is moved to the right end if last is true (the default) or to the beginning if last is false. Raises KeyError if the key does not exist
code:
from collections import OrderedDict
class LRUCache:
def __init__(self, capacity: int):
self.maxsize = capacity
self.lrucache = OrderedDict()
def get(self, key: int) -> int:
# 说明在缓存中,重新移动字典的尾部
if key in self.lrucache:
self.lrucache.move_to_end(key)
return self.lrucache.get(key, -1) # get不到就返回-1
def put(self, key: int, value: int) -> None:
# 如果存在,删掉,重新赋值
if key in self.lrucache:
del self.lrucache[key]
# 在字典尾部添加
self.lrucache[key] = value
if len(self.lrucache) > self.maxsize:
# 弹出字典的头部(因为存储空间不够了)
self.lrucache.popitem(last = False) # FIFO order if false
# Your LRUCache object will be instantiated and called as such:
# obj = LRUCache(capacity)
# param_1 = obj.get(key)
# obj.put(key,value)
Approach2
哈希 + 双向链表
class Node:
def __init__(self, key, val):
self.key = key
self.val = val
self.prev = None
self.next = None
class LRUCache:
def __init__(self, capacity: int):
# 构建首尾节点, 使之相连
self.head = Node(0, 0)
self.tail = Node(0, 0)
self.head.next = self.tail
self.tail.prev = self.head
self.lookup = dict()
self.max_len = capacity
def get(self, key: int) -> int:
if key in self.lookup:
node = self.lookup[key]
self.remove(node)
self.add(node)
return node.val
else:
return -1
def put(self, key: int, value: int) -> None:
if key in self.lookup:
self.remove(self.lookup[key])
if len(self.lookup) == self.max_len:
# 把表头位置节点删除(说明最近的数据值)
self.remove(self.head.next)
self.add(Node(key, value))
# 删除链表节点
def remove(self, node):
del self.lookup[node.key]
node.prev.next = node.next
node.next.prev = node.prev
# 加在链表尾
def add(self, node):
self.lookup[node.key] = node
pre_tail = self.tail.prev
node.next = self.tail
self.tail.prev = node
pre_tail.next = node
node.prev = pre_tail